
Give your apps a new shine with microservices

Credits Kalpana Angamuthu Mogan A.B. Madalai Muthu Jacob

A simplified approach to breaking up your monolithic applications into

microservices

Confidential & Restricted 2

Strategies for refactoring a legacy monolithic application to a microservices architecture

For digital native players, the strategy is quite straight forward since all the functional modules are developed from scratch as
a microservices component. However, in case of larger DSPs, the siloed, bulky, monolithic systems are not flexible enough to
scale with changing customer needs. Telcos are now looking to embrace the concept of microservices as a new architectural
framework to achieve business goals such as agility and flexibility, to operationalize manifold digital business models.

The migration journey approach discussed throughout this insight is applicable to any DSPs who have huge, legacy
monolithic applications in place and prepare to switch to microservices.

Functional domain
segregation

Choosing the most suitable
development framework

Choosing a microservices
chassis framework

Choosing a microservices
architectural design pattern

Choosing continuous
delivery platform

1 2 3 4 5

The below infographic highlights the five mandatory selections for DSPs to consider before embarking on the microservices journey. Each stage has a
proposed qualification checklist with key recommendations to navigate through the migration journey.

Confidential & Restricted
Confidential & Restricted

Stage : Prioritizing the functional modules for migrating into microservices

3

1

Majority of the DSPs operate with multi-vendor based legacy OSS and BSS applications. However, one of the major challenge for DSPs is to
understand and strategize the right place to start in their microservices journey.

For any DSP, there is no standard rule for selection of modules for migration and it is mainly
driven by technical, business and operational needs.

Segregating the functional modules for migrating into microservices
Below checklist assists in segregating modules with respect to domain and sub-domain functions to help DSPs identify the top best-suited
modules for microservices within a legacy application

✓ Does the module handle large volume of events/traffic?
✓ Does the module require dynamic scaling during run time?
✓ Does the module get frequently modified or enhanced?
✓ Does the module get customized for different customers?
✓ Is the module subject to frequent maintenance releases?
✓ Is the module being developed by geographically distributed teams?
✓ Does the module perform similar function ?
✓ Does the module have limited interfaces with other modules?
✓ Does the module perform a highly computationally intensive task?

If most of the answers to the
checklist are YES, then it’s the most

probable candidate for migrating
to microservices.

The next step shows an example of a huge monolithic application comprising of various modules and
the principles to identify direct candidates for microservices migration.

Part 1/2

Confidential & Restricted
Confidential & Restricted 4

Stage How domain segregation helps DSPs to identify direct microservices candidates

Group by similar
domain features

Group by similar sub-
domain features

Group by specific
features and business

context

Group by customer
specific features

High Cohesion and Low Coupling Multiple Actions Business Orientation

Module A

Data Layer A

Service Layer

Domain-
driven design

Module B

Data Layer B

Module C

Data Layer C

Service Layer

Module D

Data Layer D

Single
responsibility

Service Layer Service Layer

Domain-driven design or
development

This technique primarily focuses on business
domain rather than technology. It is used to
group the existing legacy modules with bounded
context of domain or sub-domain level.

Single responsibility
principle

• The functional relatedness of the elements of a
module

• Measure of the strength of relationship between
the methods and data of a class

After identifying the top candidates for microservices focus shifts to developing microservice modules.

Bounded
context

1

Part 2/2

Confidential & Restricted
Confidential & Restricted 5

Stage Choosing the most suitable development framework for microservices

There are multiple frameworks, which help in developing microservices. The most suitable framework is chosen
based on business requirement and features supported. It is also possible to use more than one framework
seamlessly integrated for building microservices. Below is a list of the widely used java-based microservices
development frameworks.

✓ Is there a need for ease of use?
✓ Is there a need for quick project building?
✓ Does the application require quick introduction of

advanced/new features?
✓ Does the application require most advanced

RESTful support?
✓ Does the team expect support from open

community?
✓ Does the framework has minimal size and occupy

less memory?
✓ Does the framework enable production-ready and

fast deployment?
✓ Is performance a key factor for the application?

Recommendations on each development framework

Drop Wizard
Quick project building, bootstrapping and fast phased development

Spark
It takes time to introduce advanced features, simple to use and runs fast

Restlet
Powerful and supports most advanced RESTful support, steep learning
curve and closed community

Play
Easy to develop, quick project building and bootstrapping, huge base
and not suitable for large projects

Spring Boot

Production ready and fast development, feature complete framework
(Spring portfolio)

MS4J
A very fast start-up time, low memory footprint, high throughput and
low latency

After developing microservices modules, the next step is to make them operational ready with help of chassis framework.

2

Checklist for choosing development Framework

Confidential & Restricted
Confidential & Restricted 6

Stage : Piloting various chassis frameworks with test drive approach 3

Choosing a microservices chassis framework requires small trials or POCs to evaluate the right one that best suits the
application needs and it is recommended to go with the test-drive approach.

Selecting a chassis framework alone does not guarantee application’s performance or stability. The success largely depends on the
microservices design patterns that make the application fully functional with high performance, resilience and fault tolerance.

Sample test conducted on a O/BSS monolithic application showed that Netflix and
WSO2 frameworks provided almost similar results during trails

• For sequential operations, both the frameworks were found competitive
• For concurrent operations, the performance of both the frameworks was impacted

after reaching a threshold
• Nevertheless, both frameworks yielded better results as compared to the

monolithic application

In this context, device and service modules are selected from sample legacy
monolithic application for refactoring.

• Spring boot is used to develop two small microservices and
implement it in Netflix OSS chassis framework.

• MS4J is used to develop two small microservices and implement
it in WSO2 chassis framework.

Then the results are compared to choose the best suited frameworks.

A sample test drive approach for choosing the chassis
framework

Confidential & Restricted
Confidential & Restricted 7

Stage The right choice of microservices design patterns determines application
performance

4

Microservices design patterns are repeatable solution to a commonly occurring problem in software design. Design patterns act
as a template for how to solve a problem that can be used in different situations. Based on individual application characteristics,
scalability, migration strategy, performance and deployment needs, DSP should choose the most appropriate one.

The following list explains the most widely used design patterns for migrating telco related applications.

Top recommended microservices design patterns

Aggregator

Service A

Service B

Service C

DB

DB

DB

Aggregator microservices pattern

Proxy microservices pattern

When aggregation or
orchestration of data
from multiple services
is required.

In phased migration
approach - both monolithic
and microservices are co-
existing in production
environment.

Internal load balancer

Proxy

Service A

Service B

Service C

DB

DB

DB

It is recommended for DSPs to perform iterative testing with the choice of chassis framework and design
pattern in order to achieve better application performance and scalability.

When to use Where to use (examples)

Part 1/2

Monolith

Input

Self-care or Customer-Care portals, Billing applications
Various services like user, VAS, interconnect, account and
transaction services from various components get
aggregated before the actual bill generation process.

Migration of selected functions from monolithic
When migrating legacy application to microservices in
phased manner, proxy microservices pattern is used. The
service requests from front end application will be proxied
to monolithic and/or microservices as needed.

Confidential & Restricted
Confidential & Restricted

Service B

DB DB

Service A

DB

Service D

8

Stage The right choice of microservices design patterns determines application
performance

4

Service B

Service C

DB

DB

DB

Service A

DB

Service D

Service B

DB DB

Service A

DB

Service D

Stream

Event-driven microservices pattern

Chained microservices pattern

Branch microservices pattern When to use

Scenarios where a request
is processed by a single
and chained microservices
to provide a consolidated
response

Part 2/2

When asynchronous
request handling is
required

Whenever single
consolidated response is
required after sequential
processing

Choosing the right combination of design pattern, chassis and development framework is a critical
success factor for the microservices transformation journey.

Input

Input

Input

Customer usage reports in billing
To view a usage report, Service-A fetches the user details from user
management microservice (Service B) and usage details from chained
microservices - service & usage microservices (Service C & D).

Order management
Change of plan request: Service A places the request onto Stream
and triggers relevant microservices (e.g. Service B & D) to complete
the tasks in the backend in an asynchronous manner. Upon
completion, user gets notified.

VAS systems
When the user requests for value added service, Service A invokes
policy enforcement microservices (i.e. Service B) to validate the
eligibility. After validation, it invokes the credit check service (Service
D) to ensure sufficient balance before activation.

Where to use (examples)

Confidential & Restricted
Confidential & Restricted 9

Microservices based architecture brings
in a lot of agility, which makes adoption
of DevOps culture easy. The final step
before the complete development of
microservices is to setup a continuous
integration and continuous deployment
pipeline, which enables the below
functionalities.

• Quick independent deployments
• Seamless upgrade of microservices

versions
• Auto scaling of services
• Ease of management and reliability

Stage Continuous delivery platform for DSPs with CI-CD pipeline for microservices5

Zero-touch automation capabilities of microservices modules enables DSPs to rollout frequent releases on
weekly or daily basis, propelling digital transformation strategy.

Check-out

Run Tests

Build

SVN Server

Developer

Docker Registry
Or

Docker Hub

API
Gateway

Zuul
Service Pod

MS1

Service Pod

Registry

Eureka
Service Pod

Ms2

Service Pod

Security

OAUTH
Service Pod

Msn

Service Pod

.

.

.

.

Cluster Notes

etcd

Kube UI

DNS

Kube Admin

Master Node

Docker
Pull

Continuous Integration Continuous Deployment

Kubernetes Dashboard

Scaled
microservices

Seamless
Deployment

Automated
Deployment

Automated
Build

C
h

e
ck

-I
n

Build Docker
Image

Docker
Push

Confidential & Restricted
Confidential & Restricted

Key takeaways

10

80% of enterprises are

counting on microservices

5x faster deployment of

new software releases for
enterprises who use
microservices

Source: According to recent surveys with multi-corporate enterprises, leanIX

9% of enterprises have

already adopted microservices

33% intend to

transform existing
monoliths to

microservices
38% enterprises use

microservices for new
module development while
retaining the legacy system

https://cdn2.hubspot.net/hubfs/2570476/Sales%20info/leanIX_Microservices-Study.pdf

Get in touch

T
H

A
N

K
 Y

O
U

!USA

Prodapt North America
Tualatin: 7565 SW Mohawk St.,
Phone: +1 503 636 3737

Dallas: 1333, Corporate Dr., Suite 101, Irving
Phone: +1 972 201 9009

New York: 1 Bridge Street, Irvington
Phone: +1 646 403 8158

INDIA

Prodapt Solutions Pvt. Ltd.
Chennai: Prince Infocity II, OMR
Phone: +91 44 4903 3000

“Chennai One” SEZ, Thoraipakkam
Phone: +91 44 4230 2300

Bangalore: “CareerNet Campus”
2nd floor, No. 53, Devarabisana Halli,
Phone: +91 44 4903 3000

SOUTH AFRICA

Prodapt SA (Pty) Ltd.
Johannesburg: No. 3,
3rd Avenue, Rivonia
Phone: +27 (0) 11 259 4000

EUROPE

Prodapt Solutions Europe
Amsterdam: Zekeringstraat 17A, 1014 BM
Phone: +31 (0) 20 4895711

Prodapt Consulting BV
Rijswijk: De Bruyn Kopsstraat 14
Phone: +31 (0) 70 4140722

Prodapt Germany GmbH
Aschheim: Sonnenstraße 31, 85609
Germany

UK

Prodapt (UK) Limited
Reading: Davidson House,
The Forbury, RG1 3EU
Phone: +44 (0) 11 8900 1068

CANADA

Prodapt Canada Inc.
Vancouver: 777, Hornby Street,
Suite 600, BC V6Z 1S4

insights@prodapt.com | www.prodapt.com

